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ABSTRACT
A variety of classical machine learning (ML) approaches has been developed over the past decade aiming to individualize drug 
dosages based on measured plasma concentrations. However, the interpretability of these models is challenging as they do not 
incorporate information on pharmacokinetic (PK) drug disposition. In this work we compare drug plasma concentraton predic-
tions of well-known population PK (PopPK) modeling with classical machine learning models and a newly proposed scientific 
machine learning (MMPK-SciML) framework. MMPK-SciML allows to estimate PopPK parameters and their inter-individual 
variability (IIV) using multimodal covariate data of each patient and does not require assumptions about the underlying covari-
ate relationships. A dataset of 541 fluorouracil (5FU) plasma concentrations as example for an intravenously administered drug 
and a dataset of 302 sunitinib and its active metabolite concentrations each as example for an orally administered drug were used 
for analysis. Whereas classical ML models were not able to describe the data sufficiently, MMPK-SciML allowed us to obtain 
accurate drug plasma concentration predictions for test patients. In case of 5FU, goodness-of-fit shows that the MMPK-SciML 
approach predicts drug plasma concentrations more accurately than PopPK models. For sunitinib, we observed slightly less 
accurate drug concentration predictions compared to PopPK. Overall, MMPK-SciML has shown promising results and should 
therefore be further investigated as a valuable alternative to classical PopPK modeling, provided there is sufficient training data.

1   |   Introduction

During the last decade machine learning (ML) techniques 
have been increasingly employed for estimating drug plasma 
concentrations in dependency of pharmacokinetic (PK) pa-
rameters. Aside from concentration prediction, ML has also 

been used for other purposes in pharmacometric modeling, 
including data imputation, covariate selection, and treatment 
response prediction. Thus, many authors have discussed in 
detail how ML can be used for different modeling approaches, 
such as population PK (PopPK), pharmacometric simulation, 
model-informed precision dosing, and systems pharmacology 
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to facilitate collaboration with computer scientists [1–4]. Main 
concerns regarding classical ML include (i) lack of model in-
terpretability and mechanistic insight, (ii) difficulty to han-
dle inter-individual variability (IIV), and (iii) requirements 
of larger training data than typical in PopPK. However, some 
approaches have been proposed to address some of these lim-
itations [5–9]. Lu et  al. trained neural ordinary differential 
equations (NODEs) to predict PK profiles [8]. A combination 
of neural networks (NN) and knowledge-derived ODEs was 
employed by Qian et al. [10]. Similarly, Janssen et al. used a 
NN to learn covariate effects of drug concentrations [11]. We 
introduced PK-SciML [12], a Scientific Machine Learning 
(SciML) [13, 14] approach for learning an unknown absorption 
mechanism while simultaneously estimating PK parameters. 
However, our previous model was evaluated on simulated data 
and only generates populational level predictions for different 
dose groups. Given that a SciML framework benefits from not 
requiring prior knowledge of the exact relationships between 
covariates and parameters while still incorporating domain 
expertise, we introduce a multimodal pharmacokinetic SciML 
(MMPK-SciML) approach. This extension of PK-SciML is de-
signed to learn IIV based on multimodal covariate data, en-
abling the prediction of drug concentrations and simulation of 
complete concentration-time profiles. In this paper, we denote 
as multimodal a dataset incorporating different data modali-
ties, including clinical measurements, demographic informa-
tion, and other data types. As a case study, we use two real 
datasets for two different anticancer treatments as examples 
for an intravenous (iv) and an oral administration route and 
compare our model with different classical ML and PopPK 

approaches. We demonstrate that our model produces reliable 
predictions of drug plasma concentrations.

2   |   Methods

2.1   |   Data Collection and Preprocessing

2.1.1   |   Fluorouracil (5FU)

In this work, plasma concentrations of patients who received 
fluorouracil (5FU)-based infusional chemotherapy at the 
Oncological Outpatient Clinic UnterEms in Leer, Germany, 
were retrospectively analyzed [15]. This study was approved by 
the local medical ethics committee, but trial registration was not 
conducted due to the retrospective nature. Plasma 5FU concen-
trations were obtained at steady-state during continuous infu-
sion and quantified using the My5-FU immunoassay (Saladax 
Biomedical Inc., Bethlehem, PA, USA) [16]. The dataset included 
549 concentration measurements from 157 patients and informa-
tion on demographics, blood counts and adverse events. Doses 
were documented for all patients with their corresponding infu-
sion times. Samples were drawn at steady-state 16.8–25.0 h after 
start of infusion. All patients with documented therapeutic drug 
monitoring (TDM) of 5FU were included in the analysis, except 
for one patient who only had one concentration below the lower 
limit of quantification (BLQ). Outliers were defined as samples 
with a concentration BLQ (< 52 ng/mL) or a clearance above 
1478 L/h (corresponding to 739 L/h/m2 and a body surface area 
(BSA) of 2 m2). This was deemed implausible due to reported 
ranges [17] and those concentrations were excluded from the 
dataset. In total, we omitted eight entries from eight different pa-
tients (1.45% of all samples). For 5FU, one to nine samples per pa-
tient with a median of three were available for analysis. Weight 
was measured only once or twice per cycle and height only in 
the beginning of treatment. Thus, these values were assumed to 
remain unchanged until a new measurement was taken.

2.1.2   |   Sunitinib

Sunitinib PK data were pooled from two PK/PD studies focus-
ing on sunitinib treatment in patients with metastatic renal cell 
carcinoma (mRCC) and patients with metastatic colorectal can-
cer (mCRC) [18, 19]. The C-IV-001 study (EudraCT-No: 2012–
001415-23, date of authorisation: 17.10.2012) was a phase IV PK/
PD substudy of the non-interventional EuroTARGET project, 
which recruited patients with mRCC at nine medical centres in 
Germany and the Netherlands [18]. Sunitinib doses ranged from 
37.5–50 mg daily, administered orally on a 4-week on/2-week 
off schedule. The C-II-005 study (EudraCT-No: 2008–00151537, 
date of authorisation: 11.06.2008) was conducted to investigate 
the beneficial effect of sunitinib added to biweekly folinate, flu-
orouracil and irinotecan in patients with mCRC and liver metas-
tases. Patients were prescribed a daily dose of 37.5 mg sunitinib 
on a 4-week on/2-week off schedule taken orally [19]. Both 
studies were performed in accordance with the Declaration 
of Helsinki. A total of 308 sunitinib plasma and active metab-
olite (SU12662) concentrations were obtained from 26 mRCC 
and 21 mCRC patients [20]. Six sunitinib measurements BLQ 
(< 0.06 ng/mL) from five different patients were excluded from 

Summary

•	 What Is the Current Knowledge on the Topic?
○	 Machine Learning and Scientific Machine Learning 

(SciML) frameworks have shown promising re-
sults for pharmacokinetic (PK) modeling. However, 
methods for learning the inter-individual variability 
(IIV) have not been widely investigated.

•	 What Question Did This Study Address?
○	 How well do population pharmacokinetic (PopPK) 

and classical machine learning (ML) approaches 
perform in comparison to a SciML approach for PK 
modeling? Can a neural network be employed in a 
SciML framework to learn IIV while making accu-
rate PK predictions?

•	 What Does This Study Add to Our Knowledge?
○	 The proposed MMPK-SciML model learns PopPK 

parameters and their IIV and may lead to more 
precise predictions than classical ML and PopPK 
approaches if enough data is given. Our proposed 
MMPK-SciML approach also addresses common 
drug development challenges such as missing values 
and different sampling times.

•	 How Might This Change Drug Discovery, 
Development, and/or Therapeutics?
○	 Our final framework provides an approach to learn 

patient-specific PK parameters and their IIV. Its po-
tential for developing novel dosing strategies should 
be assessed in future studies.
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the analysis, accounting to 1.95% of all samples. Times and dates 
of the respective doses were defined according to Diekstra et al. 
[20]. In the C-IV-001 study, up to 12 plasma samples were col-
lected within 3 cycles during routine checkups. In the C-II-005 
study, plasma samples were collected within 2 cycles at baseline, 
day two of each cycle, and afterwards approximately every sec-
ond week, always before sunitinib intake [20]. For sunitinib, we 
had one to 14 samples per patient with a median of 6.5 in the 
dataset. In general, weight and height were only measured in 
the beginning of treatment; thus, these values were assumed to 
remain unchanged. Missing values were 12.9% for weight, 10.9% 
for height and 6.6% for BSA. Notably, in some cases only BSA 
was reported, but not weight and height.

2.1.3   |   Data Preprocessing

The total datasets were split using a 10 times 5-fold cross-
validation setting with a training-test split of 80/20, keeping 
data from one patient strictly in the same set to avoid a splitting 
bias. For the classical ML algorithms, continuous features were 
scaled between zero and one.

2.2   |   Population Pharmacokinetic Modeling

For all PopPK analyses, we used the NONMEM version 7.5.0 and 
the PsN version 5.2.6. Pirana (version 3.0.0.) served as front inter-
face. R version 4.3.1. was used in R Studio version 2023.06.1. The 
PopPK model for 5FU comprised of a one-compartment model 
with linear elimination to describe 5FU disposition [15]. While 
the 5FU clearance and its IIV were estimated, the volume of dis-
tribution and its IIV were fixed to previously estimated values 
[15] because they were mathematically (i.e., structurally) non-
identifiable. The residual variability was modeled as proportional 
and the BSA, centered on the population median, was included 
as a linear covariate on clearance. All available BSA values were 
used in modeling. Differently from the original model [15], the 
skeletal muscle index was not included as a covariate, because 
it was not available for all included patients. Schmulenson et al. 
used the first order conditional estimation with interaction 
(FOCE-I) method to estimate the parameters [15]. In addition, we 
employed stochastic approximation expectation maximization 
with interaction (SAEM-I) to understand potential differences in 
parameter estimates and random effect distributions compared 
to FOCE-I [21]. Inter-occasion variability (IOV) was not included 
in the final model, because there was no significant improvement 
of the objective function value and the parameter precision by 
modeling IOV. First, we estimated the PK parameters for the pa-
tients in the training set using FOCE-I and SAEM-I and initial 
estimates based on reported values from Schmulenson et al. [15]. 
In the next step, the retrieved estimates were used to simulate 
the expected concentrations for the test data. Mean concentration 
values were calculated by subject from 1000 simulations with-
out including residual variability (simulated IPRED) and without 
re-fitting the model. The structure of the PopPK model for suni-
tinib is shown in Equations  5–11. A two-compartment model 
for sunitinib disposition and a biphasic distribution for its active 
metabolite SU12662 were used [20, 22]. Presystemic formation 
of SU12662 was modeled via a hypothetical enzyme compart-
ment incorporated into the central compartment of sunitinib. An 

intercompartmental clearance connected the central compart-
ment and the enzyme compartment and was fixed to the liver 
blood flow. Furthermore, the fraction of sunitinib converted to 
SU12662 and the peripheral volume of distribution of sunitinib 
were fixed to reported values [20]. IIV was included for the cen-
tral volumes of distribution for sunitinib and SU12662, the clear-
ance of sunitinib and the fraction metabolized in a block matrix. 
Proportional errors for the parent drug and metabolite were used 
to describe the residual unexplained variability. For the PopPK 
model, missing weight data was imputed on the training data 
using the mean values for each sex according to Diekstra et al. 
[20]. After model fitting, we simulated the expected plasma con-
centrations for the patients in the test dataset.

2.3   |   Classical Machine Learning Algorithms

Various classical ML methods, including Random Forests, 
Gradient Boosting, Extreme Gradient Boosting (XGBoost), 
Light Gradient Boosting (LightGBM), Support Vector Machines 
(SVM) and simple NN with one and two hidden layers were used 
for concentration prediction in Python version 3.10. For 5FU the 
input variables consisted of dose, weight, lean body mass (LBM), 
fat mass (FM), BSA, age, sex, height, and time since last dose. 
For sunitinib input variables comprised sex, age, weight, height, 
BSA, and time since last dose. These potential covariates, de-
spite most of them having been excluded in stepwise covariate 
modeling (SCM), were included to enable the ML algorithms to 
make use of potential previously missed relationships within the 
data as they have shown to outperform SCM in some cases [21]. 
Hyperparameter tuning was performed using the Bayesian hy-
perparameter optimisation framework Optuna (version 3.5.0) 
[22] and models were selected by applying 5-fold cross validation 
with the mean squared error as the objective function. Missing 
covariate data for sunitinib was imputed using a random forest 
approach (MissForest, version 2.4.2; missingpy, version 0.2.0) 
within the cross-validation process. The NNs were regularized 
applying common techniques such as drop-out, L1 regulariza-
tion and gradient clipping to avoid overfitting.

To investigate whether the model performance of the classical 
ML methods could be further improved by adding synthetic 
data, the training dataset for sunitinib was augmented for each 
split according to Table S1. To simulate drug concentrations for 
each synthetic patient, we used the Diekstra et al. PopPK model 
fitted on training data within the cross-validation procedure. 
1000 synthetic patients with one measurement each were cre-
ated within each cross-validation fold and added to the original 
training data. The consistency of the augmented with the real 
data can be seen in density plots for the covariates and goodness-
of-fit plots for the concentrations in Figure S1.

2.4   |   Multimodal Pharmacokinetic SciML Model 
(MMPK-SciML)

The main motivation of MMPK-SciML was to overcome the lim-
itations of PK-SciML [12], that is, we wanted to build a model 
learning the IIV using NN and multimodal patient information. 
Following the classical PK framework, individual parameters 
using IIV are defined as follows:
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where TVk is the typical population value of the parameter 
k ∈ J , and �k,i (with k ∈ K ⊆ J) represents the IIV of that param-
eter for patient i. Notably, J is the total number of parameters, 
and K the subset of parameters with IIV. That means there can be 
parameters without IIV. Among those, a subset L ⊆ J was learned 
and the rest was fixed.

Our proposed architecture is composed of two main blocks: (i) 
a NN encoder which aims to predict the � values using patient 
covariates and (ii) a structurally well-defined ODE system to de-
scribe the PK dynamics. Therefore, given a total set of J patient 
parameters 

{

�k,i
}

k∈J
, a dose regimen, and a time horizon, the 

individual concentration profiles were predicted by solving the 
initial value problem of the ODE system.

Following PK-SciML [12] and Lu et al. [8] the dosage was added 
to the first compartment of the ODE system. Additionally, we 
fixed the initial conditions to zero to guarantee a plausible ODE 
system. Model implementation is available on GitHub at https://​
github.​com/​SCAI-​BIO/​MMPK-​SciML​.

2.4.1   |   Variational Inference

Let yi,t, t ∈   denote the concentration profile measured at time 
points   for patient i . Furthermore, xi are patient-specific covari
ates. The mean ��k,i

 and (log) variance log
(

�2
�k,i

)

 of the approximate 
posterior distribution of each �k,i are learned from the observed 
data via an encoder neural network �� :

The initial value problem can then be solved by sampling 
from the distribution N

(

��i
, �2

�i

)

 while taking advantage of 
the re-parametrization trick [23]. Specifically, the negative 
Evidence Lower Bound (ELBO) can be re-written as a loss 
function �

({

ỹi,t
}

,
{

yi,t
})

:

where �2
i,t

 is the variance of the measurement noise, � a regular-
ization parameter, and ỹi,t the ODE solution. For the following 
experiments we assumed a proportional error �2

i,t
∝ yi,t. More de-

tails can be found in Appendix A.

2.4.2   |   Model Details

2.4.2.1   |   5FU.  Because all the measurements were taken at 
steady state, we considered them as conditionally independent 
and thus treated them as separate training samples. As struc-
tural ODE System we used an intravenous model as follows:

(1)�k,i =

{

exp
(

log
(

TVk
)

+�k,i
)

=TVk×exp
(

�k,i
)

if k∈K

TVk if k∈ J�K
(2)

{

��k,i
; log

(

�2
�k,i

)}

k∈K
= ��

(

xi,
{

yi,t
})

(3)

−ELBO

({

xi, yi,t
})

∝�
({

ỹi,t
}

,
{

yi,t
})

≔

∑

k∈K

1

n

∑n

i=1

∑

t∈

(

yi,t− ỹi,t
)2

2�2
i,t

−
1

2

(

�2
�k,i

�2
+
�2
�k,i

�2
+ log

�2

�2
�k,i

)

(4)dC1

dt
=
D

IT
−
CL

V
C1

(5)C1(t = 0) = 0

FIGURE 1    |    MMPK-SciML overview. The mean and log variance of the patient random effects' distribution is predicted with a neural network. 
At the same time, the population parameters are being learned and are used with an random effect sample to define the patient-specific parameters, 
which are used with the patient dose regimen to predict the PK profile.
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where D is the dose, IT is the infusion time CL is the clearance, 
and V  the volume of distribution.

To learn the random effects, we defined �� as an encoder net-
work using the concatenation of the measured concentration, 
dose, weight, LBM, FM, BSA, age, sex and height which were 
used as input for the first layer. Specifically, while 

{

TVCL, IIVCL
}

 
were estimated, TVV = 46.1L was fixed. Figure 1 (top) shows an 
overview of our model architecture for 5FU. Model hyperpa-
rameters and more details can be found in Appendix A.

2.4.2.2   |   Sunitinib.  We used as structural ODE system 
the model proposed by Diekstra et al. [20]:

where KA is the absorption rate, FM is the fraction metabolized 
to SU12662, 

(

CLS,QS

)

,
(

CLM,QM

)

 are the clearance and inter-
compartmental clearance rate for sunitinib and its metabolite, 
respectively, QH is the liver blood flow, 

(

V2S,V3S
)

,
(

V2M,V3M
)

 
represent the volume of distribution and peripheral volume for 
sunitinib and its metabolite, respectively.

According to the original work by Diekstra et  al. [20], the 
parameters of the sunitinib ODE system equations  (5–10) 
should be scaled to make them comparable to literature val-
ues. Therefore, we first calculated the PK parameters following 
Equation (1), and then the values for CLS,QS, CLM,QM,QH were 
scaled by a factor of 

(

Weighti
70

)0.75

 and those for V2S,V3S,V2M,V3M 
by a factor of Weighti

70
.

�� was defined as a multimodal NN encoder containing three 
blocks. The first block was an encoder for static covariates 

{

xi
}

. 
Since the sunitinib dataset includes measurements at multiple 
time points during the therapy cycle, the second block encoded the 
longitudinal covariates 

{

yit
}

, for which we used the Time-LSTM 
[24] to capture the temporal dependencies. The output of both en-
coders was concatenated and used by a third block, the projection 
encoder, with 2 subnetworks each producing ∣ K ∣ outputs which 
define 

{

��k,i
; log

(

�2
�k,i

)}

k∈K
. We defined ∣ K ∣ = 4 corresponding 

to the IIV for CLS,V2S,FM,V2M. Population parameters 
{

TVk
}

k∈J
 

were either learned as part of the model training or fixed according 
to Diekstra et al. [20]. Figure 1 (bottom) shows an overview of our 
model architecture for sunitinib. Model hyperparameters and 
more details can be found in Appendix A.

2.5   |   Model Comparison

The goal of all algorithms was to predict single point plasma 
concentrations for patients in the test set based on information 

(6)CLIV =
KAC1 +

QH

V2S
C2

QH + CLS

(7)
dC1
dt

= − KAC1

(8)
dC2
dt

= QHCLIV −
QH

V2S
C2 −

QS

V2S
C2 +

QS

V3S
C3

(9)
dC3
dt

=
QS

V2S
C2 −

QS

V3S
C3

(10)
dC4
dt

= FMCLSCLIV −
CLM
V2M

C4 −
QM

V2M
C4 +

QM

V3M
C5

(11)
dC5
dt

=
QM

V2M
C4 −

QM

V3M
C5

(12)
C1(t = 0) = C2(t = 0) = C3(t = 0) = C4(t = 0) = C5(t = 0) = 0

TABLE 1    |    Baseline patient characteristics (median and range).

5FU

Demographics

Sex M/F 96/60

Age (years) 64.5 (35–83)

Body surface area (m2) 1.915 (1.35–2.85)

Therapy-related details

5FU dose (mg) 4000 (2700–5720)

5FU AUC (mg × h/L)a 18.75 (8.1–92.3)

Therapy regimen

AIOb 48

FUFOXc (including 
monoclonal antibodies)

41

Paclitaxel/cisplatin/5FU/
folinate

39

Other 28

Tumor entity

Colorectal cancer 79

Gastroesophageal cancer 48

Pancreatic cancer 16

Other 14

Sunitinib

Patients with 
mRCC (n = 26)

Patients with 
mCRC (n = 21)

Demographics

Age 64 (43–75) 61 (33–85)

Sex M/F 25/1 12/9

Weight (kg) 83 (65–106) 73 (57–106)

Height (cm) 180 (155–186) 172 (149–184)

BMI (kg/m2) 25.7 (22.5–34.5) 26.0 (13.3–39.3)

Abbreviations: BMI, body mass index; mCRC, metastasized colorectal cancer; 
mRCC, metastasized renal cell carcinoma.
aCalculated by multiplying the infusion time with the measured steady-state 
concentration.
bWeekly 5FU infusion (2600 mg/m2) over 24 h in combination with folinate 
(500 mg/m2).
cWeekly 5FU infusion (2000 mg/m2) over 24 h in combination with folinate 
(500 mg/m2) and oxaliplatin (50 mg/m2).
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learned from the training data. To assess predictive performance, 
the mean absolute error (MAE), and the root mean squared 
error (RMSE) were calculated and compared for the different 
approaches used in this project. Goodness-of-fit (GOF) plots 
were used to support the quantitative results. In the case of the 
PopPK models, we used the fixed and random effect parameter 
estimates obtained on the training data to simulate individual 
predicted values for patients in the test dataset. Mean individ-
ual predictions were calculated from 1000 simulations and 
compared against actual measurements. For the classical ML 
methods, the final predictions on the test dataset were used for 
the calculation of performance metrics. For the MMPK-SciML 
approach, the individual predictions for each patient were ob-
tained using the means predicted by the encoder as random ef-
fects values because these represent the expected value.

To evaluate how well the models perform in simulating whole 
plasma PK profiles, prediction-corrected visual predictive checks 
(pcVPCs) were generated. These graphs could not be obtained for 
the classical ML approaches, because they are not generative.

3   |   Results

3.1   |   Dataset Characteristics

A dataset of 541 fluorouracil (5FU) plasma concentrations from 
156 patients as example for an IV administration and another 
dataset of 302 sunitinib and active metabolite concentrations 
each from 47 patients as example for a po administration were 
used for analysis. Baseline characteristics of all patients in-
cluded in our analyses can be seen in Table 1.

3.2   |   Population Pharmacokinetic Modeling 
Results

In the PopPK analyses, all PK parameters and their IIVs as de-
fined in the original publications [15, 20] could be estimated for 
all data splits. The mean estimated parameter values were in a 
similar range to the originally estimated values for the whole 
datasets as depicted in Table 2 and the � values appeared to be 
normally distributed for all tested methods. There were no rel-
evant differences between the estimated parameters and the 
simulated concentrations for the test data of the FOCE-I and 
SAEM-I methods.

For 5FU, using both FOCE-I and SAEM-I, the GOF was rela-
tively poor, and showed wide confidence intervals (Figures  2 
and 4).

In the case of sunitinib, convergence problems while fitting the 
PopPK model in some of the splits could only be solved by setting 
the initial estimates close to values reported by Diekstra et al. 
[20], yielding comparable results and good fits (Figures 3 and 4). 
No significant differences between FOCE-I and SAEM-I fitting 
methods could be observed.

3.3   |   Classical Machine Learning Methods

Optimized hyperparameters for all methods are reported in 
Table S2. The proposed methods were not able to accurately 
predict plasma concentrations of both drugs as can be seen 
in the GOF plots in Figures 2 and 3, and the cross-validated 
accuracy metrics in Table 3. Augmentation of the original by 

TABLE 2    |    Cross validation population parameters (mean + SD) for 5FU and sunitinib.

5FU

Parameter Unit Schmulenson et al. [15] PopPK (FOCE-I) PopPK (SAEM) MMPK-SciML

CL L/h 223 216.05 ± 4.44 212.30 ± 4.42 212.10 ± 5.20

V L 46.1 46.1 46.1 46.1

Sunitinib

Parameter Unit Diekstra et al. [20] PopPK (FOCE-I) PopPK (SAEM) MMPK-SciML

KA 1/h 0.13 0.15 ± 0.04 0.14 ± 0.03 0.30 ± 0.02

QH L/h 80 80 80 80

CLS L/h 33.9 33.13 ± 0.91 33.64 ± 0.83 35.81 ± 0.05

QS L/h 0.37 0.36 ± 0.04 0.35 ± 0.05 0.47 ± 0.02

V2S (V2) L 1820 1822.18 ± 59.37 1825.75 ± 73.50 1343.64 ± 6.69

V3S (V5) L 588 588 588 588

CLM L/h 16.5 16.44 ± 0.42 16.79 ± 0.47 10.81 ± 0.26

QM L/h 2.75 3.21 ± 0.30 2.81 ± 0.33 12.69 ± 0.30

FM — 0.21 0.21 0.21 0.21

V2M (V3) L 730 680.14 ± 39.32 687.27 ± 63.57 397.28 ± 9.83

V3M (V4) L 592 619.57 ± 34.97 634.88 ± 47.15 242.91 ± 5.99

Abbreviations: F, fixed parameter; SD, standard deviation.
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synthetic data did not improve the situation. This can prob-
ably be attributed to the sparsity and high variability of the 
training data.

3.4   |   MMPK-SciML

Our proposed MMPK-SciML model generated accurate predic-
tions for both drugs. Figure 2, bottom row right, illustrates the 
GOF plots for 5FU. Opposed to classical ML methods a close 
correlation between the predictions and the real data was found. 
At the same time, cross-validated RMSE and MAE metrics 
were even lower than those of the PopPK model (Table  3 and 
Table S3). Especially for 5FU, we observed an at least five times 
lower MAE than all other methods, and at least 29% improve-
ment of RMSE in all the cross-validation folds (Table S3).

Although the GOF plot of our MMPK-SciML model for sunitinib 
(Figure  3 bottom row right) was not as good as those for 5FU, 
our model still showed comparable performance to the PopPK 

methods, and better prediction accuracy than the best performing 
classical ML method LightGBM (Table 3 and Table S3). As can be 
seen in Figure 4, the MMPK-SciML models performed well in sim-
ulating test patients for both datasets, as the associated statistics 
of the real data are within the 90% confidence intervals (shaded 
region) of the predictions. Additionally, our models approximated 
the posterior � distributions in a reliable manner (Figure  S2). 
Population parameters for all methods are reported in Table S4.

MMPK-SciML has an implicit imputation mechanism. To bet-
ter understand how this may impact the comparison of model 
performances, we re-ran all models using data that was pre-
imputed by MissForest. There were no significant differences 
from previously reported results.

4   |   Discussion

Our results demonstrate that generally a compartmental model 
structure is required to make accurate predictions of drug 

FIGURE 2    |    Goodness-of-fit (GOF) plots for the 5FU dataset showing predicted versus observed concentrations for selected trained models, with 
the results presented exclusively for the corresponding patients in the validation dataset.
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8 of 11 CPT: Pharmacometrics & Systems Pharmacology, 2025

plasma concentrations, especially when measurements were not 
taken at steady-state such as in the case of sunitinib or when 
concentrations that are not trough are needed such as in the case 
of 5FU. Overall, only MMPK-SciML and PopPK methods were 
able to adequately describe the underlying drug disposition. In 
contrast to MMPK-SciML, which uses the same compartmental 
model structure as PopPK, classical ML models are entirely data-
driven, lacking information about the concentration-time course 
and the time dependency between individual measurements. 
Without this structural guidance, classical ML algorithms can-
not effectively learn key aspects of the data-generating process, 
whereas MMPK-SciML leverages problem-specific background 
knowledge to more accurately learn PK parameters. It should 
be noted that with classical ML extrapolation is generally infea-
sible. Since extrapolation is often required in practice, careful 
consideration is needed when applying classical ML models to 
data beyond their original training range. These limitations in 
addition to difficulties in model training when working with 
a small number of measurements and different dose schedules 
[9, 25], have previously been reported [12]. Data augmentation 
could not improve the performance of classical ML algorithms, 
suggesting that the inherent complexity of the temporal dy-
namics, the variance and the presence of concentrations that 
are far from the mean are difficult to learn by methods that 
have been designed for comparably simple tabular data only 
and use no information about the PK related processes. In this 
context it should be noted that covariate modeling techniques 
differ between the compared methods: While classical ML and 

MMPK-SciML implicitly model interactions of covariates, this is 
not the case for PopPK models. Here interactions have to be mod-
eled explicitly, leading to a combinatorial explosion, especially if 
higher order (three-way, four-way) interactions are considered. 
Although any direct comparison between methods always re-
mains limited due to the dependency on the data used, we al-
together see a clear advantage of our proposed MMPK-SciML 
architecture in this regard. The model is particularly valuable in 
scenarios with many patient covariates where the influence of 
these covariates on random effects is not well understood, as it 
learns these relationships directly from the data. Furthermore, 
MMPK-SciML could be advantageous in cases where PK param-
eter (e.g., absorption) are challenging to estimate [12]. Since both 
treatment examples are rather complex (i.e., including dosing 
interruption or combination of different regimens), it could be 
insightful to apply the models to other treatment regimens to see 
how the performance differs in different setups. We leave this 
step as future work.

4.1   |   5FU

In case of 5FU, GOF shows that the MMPK-SciML approach 
predicts drug plasma concentrations more accurately than 
PopPK models. MMPK-SciML predicted a similar population 
clearance to that obtained with PopPK models while achiev-
ing at least a three times lower MAE and an approximately 
30% lower RSME (Tables S3 and S4). The performance metrics 

FIGURE 3    |    Goodness-of-fit (GOF) plots for the sunitinib dataset showing predicted versus observed concentrations for selected trained models, 
with the results presented exclusively for the corresponding patients in the validation dataset.
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of the classical ML approaches were in the range of the PopPK 
models, albeit with a worse GOF shown by the low correla-
tion between the predictions and the real data (Figure 2 and 
Table  S3). However, a major limitation of our analyses was 
that the genotypes and the activity of the main metabolizing 
enzyme of 5FU, dihydropyrimidine dehydrogenase, which 
are important predictors for 5FU PK, were not available for 
our patient cohort. This information probably could have im-
proved the performance of all tested models and should be re-
ported in future studies.

4.2   |   Sunitinib

We observed relatively wide confidence intervals of the MMPK-
SciML estimates. Although the absorption rate was predicted 
higher (0.13 1/h vs. 0.30 ± 0.02 1/h) and the central volume of 
distribution was predicted lower (1820 L vs. 1343.64 ± 6.69 L) 
compared to the original publication [20], the elimination 
and redistribution rates were similar across models in most 
of the cases (Table  S4). Especially large differences (> 40%) 
were observed in the estimates for the population parameters 

FIGURE 4    |    Prediction-corrected Visual Predictive Checks (pcVPC) plots for the 5FU (top) and the sunitinib (bottom) dataset.

TABLE 3    |    Cross validation average metrics for 5FU and sunitinib.

Model

5FU Sunitinib

MAE RMSE MAE RMSE

Random forest 0.23 ± 0.02 0.32 ± 0.12 18.39 ± 2.33 (18.50 ± 2.61) 22.11 ± 3.13 (22.21 ± 3.15)

LightGBM 0.23 ± 0.03 0.32 ± 0.12 16.81 ± 1.64 (19.23 ± 2.49) 20.29 ± 1.93 (22.99 ± 3.02)

Multi-layer perceptron one hidden layer 0.23 ± 0.02 0.32 ± 0.11 19.30 ± 2.63 (16.83 ± 2.52) 23.71 ± 4.07 (21.27 ± 2.44)

Multi-layer perceptron two hidden layers 0.23 ± 0.02 0.32 ± 0.11 20.82 ± 3.31 (16.59 ± 3.10) 24.96 ± 4.15 (21.49 ± 3.37)

PopPK (FOCE-I) 0.22 ± 0.04 0.30 ± 0.12 9.69 ± 2.69 14.03 ± 3.91

PopPK (SAEM-I) 0.21 ± 0.03 0.28 ± 0.11 9.50 ± 2.52 13.69 ± 3.65

MMPK-SciML 0.04 ± 0.04 0.08 ± 0.12 12.55 ± 3.43 18.87 ± 5.12

Note: We present the average value for the metrics (MAE, mean average error, RMSE, root mean square error) and (±) the standard deviation across the 10-cross 
validation. In bold we show the best performance and in brackets the results with data augmentation. Metrics are reported when using sampling from the patient-
specific distribution for test subjects.
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defining the concentration of the metabolite. Overall, the 
sunitinib analysis was more challenging than 5FU due to a 
rather small dataset composed of two different study popu-
lations increasing the variability. Moreover, more parameters 
had to be predicted due to the absorption process and the in-
clusion of metabolite concentrations, increasing the task com-
plexity. However, considering that our model performed well 
despite these limitations (Figure 3 and Table S3), we consider 
that our MMPK-SciML method would produce more narrow 
confidence intervals of parameter estimates if we had more 
training data, akin to 5FU.

5   |   Conclusions

This work highlights the need to use a structural model to ef-
fectively capture the time course of plasma concentrations in 
patients. In this regard we propose a novel hybrid ML frame-
work, which combines the flexibility of modern NN architec-
tures with a compartmental model structure describing PK 
drug disposition. A limitation is the need for larger datasets 
compared to standard PopPK modeling approaches. On the 
other hand, our approach can capture IIV by learning patient-
specific adjustments directly from the data, potentially by-
passing the need for explicit covariate relationships. This 
offers an extension of traditional PopPK techniques and re-
sults in a simplification of the modeling process. Two possible 
directions of future research are (i) to incorporate our model 
architecture into more complex frameworks for dosage adjust-
ment, for example, via reinforcement learning, (ii) to develop 
methods for understanding the individual influence of covari-
ates on model predictions.
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